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ABSTRACT

	An absence or shortened amount of curing time for Portland cement concrete can reduce the potential degree of hydration in that concrete. Adequate curing can increase the potential for hydration, the chemical reaction between cement and water, and thus potentially increase the amount of hydration products. Hydration products not only increase strength, they also occupy the void space left by water used for hydration, creating a less permeable concrete matrix. Through these mechanisms, curing can increase both the strength and durability.

	Curing concrete is often overlooked in practice due to its time-consuming process. Although the curing process can potentially slow down the progress of a project, it is crucial for the strength and durability development of concrete. Using a variety of common mixes (commercial 3500, commercial ACI, and CRED) and exposing them to limited various amounts of curing, the objective of this research is show how curing effects 28-day hardened properties.

	Six batches of each mixture were used. Sixteen four-inch by eight-inch cylinders were cast from each batch. The cylinders from each batch were divided into four sets of four and each cured for a different length of time (0, 3, 7, and 14 days). Surface resistivity, compressive strength, and split tensile strength were determined at 28 days. The effects of extended amounts of curing increased the benefits of strength and durability properties in 38 out of 54 instances. 

	The compressive strength yielded the most improvement due to longer amounts of immersion curing, however split tensile and surface resistivity also had improvements in results based on curing time. 

Introduction And Literature Review

	The process required to adequately cure concrete can be seen by many contractors as overwhelming or not worth the time and money. Common curing methods such as water ponding and the installation of wetted burlap, both for extended amounts of time, can stall the progress of a project and lead to scheduling problems for the remainder of the project. However, the process of curing concrete ensures the adequate strength development and promotion of durability characteristics (1). A concrete’s strength is undoubtedly an important characteristic and is a main describing factor in its production, while the durability of a concrete determines how long that concrete’s service life will be. An absence or shortened amount of time allowed for curing can lead to a decrease in both the strength and durability in concrete (2).

	The introduction of external water after a concrete’s final set provides moisture that can be used to keep the relative humidity (RH) of the concrete’s matrix high and provide extra water to further promote the hydration of Portland cement (2). The longer this external water is present, the more opportunity the concrete has to reach a higher degree of hydration. Hydration products take the place of the space previously occupied by the mixing water, so this promotion of hydration leads to more products being available to occupy what would have been permeable pore space, making the concrete stronger and less susceptible to harmful chloride ion penetration (3). Chloride ion penetration and sorptivity are durability problems in concrete that can lessen the service life of concrete and have seen to be higher with concrete being only air cured (4). 

	An absence of external water after a concrete’s final set, or air cured, has been seen in studies, such as a comparative study by Goel, to cause a lesser compressive and tensile strength than a concrete that has been cured via water immersion or under plastic film. This decrease in strength properties was seen in early age (3-7 days) as well as late age (28-56 days) testing, the latter of which produced the biggest difference due to the higher degree of hydration from the immersion groups (5). According to a study by Senbetta, a poorly cured concrete contained a chloride ion concentration of nearly 50% greater than a concrete that was well cured (6). This characteristic can lead to severe durability concerns for a concrete and lead to a shortened service life.

Materials and procedure

	The materials used in this experiment are shown in Table 1, Column 1. The three mixes chosen to be used in this study have been used in two previous phases of research and are meant to represent a spectrum of low to high end performance based off of strength and durability characteristics. This spectrum is displayed left to right across the top of Table 1. The percent substitution of Class F fly ash in CRED is still beyond the maximum percentage allowed by ACI 332 for concrete subjected to RF3 and RF4 exposure classes, as it was in Phases I and II (8). 


Table 1. Materials Used

	Materials
	Commercial 3500-psi
	Commercial ACI 332
	CRED

	Type I/II PC, (lbs/CY)
	375
	451
	312

	Class F Fly Ash, (lbs/CY)
	0
	0
	187.2

	Class C Fly Ash, (lbs/CY)
	1.5
	113
	0

	Metakaolin, (lbs/CY)
	0
	0
	20.8

	No. 57 Stone, (SSD lbs/CY)
	1816
	1854
	1911

	River Sand, (SSD lbs/CY)
	1281
	1217
	1252

	Water, (lbs/CY)
	250
	250
	203

	Design Percent Air
	6
	5
	6

	Air Entrainer, (oz/cwt)
	1.1
	1.1
	0.6

	Mid-Range Water Reducer (oz/cwt)
	4.2
	7.4
	8.8

	High-Range Water Reducer (oz/cwt)
	0.0
	0.0
	7.3



Six 1.06-cubic foot batches of each mixture were made with each batch consisting of sixteen four-inch by eight-inch cylinders. Sets of four cylinders within each batch were subjected to a certain amount of immersion curing time, namely 0, 3, 7 and 14 days. The lime-water immersion curing conforms to ASTM C192 specifications (9). Once the sets of cylinders had reached their prescribed amount of curing, they were removed from the immersion tank and left to air cure at room temperature. This curing schedule can be seen in Table 2.

Table 2. Type of Curing Leading Up to Age

	Cylinder IDs
	Age (days)

	
	0 to 1
	1 to 3
	3 to 7
	7 to 14
	14 to 26
	26 to 28

	1-4
	Mold
	Air
	Air
	Air
	Air
	Immersion

	5-8
	Mold
	Immersion
	Air
	Air
	Air
	Immersion

	9-12
	Mold
	Immersion
	Immersion
	Air
	Air
	Immersion

	13-16
	Mold
	Immersion
	Immersion
	Immersion
	Air
	Immersion



	At 28 days, three out of four cylinders of each set were tested for chloride ion penetration via surface resistivity (SR). In order to conform to SR’s test method, AASHTO T358-17, of testing saturated cylinders, every cylinder was placed back into the curing tank 48 hours prior to testing (10). This was done so as not to provide any additional curing as well as to provide moisture for adequate testing. Compressive strength and tensile strength were also tested at 28 days, directly after SR had taken place due to its non-destructive nature. Two cylinders of each set were tested in compression, and the other two were tested in tensile. Compressive strength was tested in accordance to ASTM C39, and tensile strength was tested in accordance to ASTM C496 (11, 12).

Results

	The results for SR of each mixture at each curing age is shown in Table 3. Tables 4 and 5 display the results for compressive strength and tensile strength, respectively.

Table 3. 28-day SR Results, kilohm-cm

	Mixture
	Curing Age (days)
	Batch 1
	Batch 2
	Batch 3
	Batch 4
	Batch 5
	Batch 6
	Mean
	Range

	
	
	
	
	
	
	
	
	
	

	Commercial 3500
	0
	6.7
	6.4
	6.8
	7.0
	6.7
	6.0
	6.6
	3.3

	
	3
	7.2
	7.3
	7.9
	7.7
	7.6
	6.8
	7.4
	3.7

	
	7
	8.2
	8.2
	8.4
	8.3
	7.7
	7.8
	8.1
	4.1

	
	14
	8.8
	8.6
	8.6
	8.4
	8.1
	8.2
	8.5
	4.2

	 

	Commercial ACI
	0
	8.2
	7.8
	7.0
	8.7
	8.5
	8.4
	8.1
	1.7

	
	3
	8.7
	8.6
	7.7
	7.3
	8.7
	8.7
	8.3
	1.4

	
	7
	8.6
	7.8
	7.6
	7.1
	8.4
	8.6
	8.0
	1.5

	
	14
	8.9
	8.3
	7.5
	9.0
	8.9
	9.3
	8.7
	1.8

	 

	CRED
	0
	20.1
	20.3
	20.6
	19.9
	20.3
	19.7
	20.2
	0.9

	
	3
	19.9
	20.5
	19.8
	19.2
	20.3
	19.6
	19.9
	1.3

	
	7
	20.4
	21.9
	21.0
	20.7
	21.9
	21.4
	21.2
	1.5

	
	14
	22.2
	22.3
	22.3
	21.5
	21.9
	22.5
	22.1
	1.0





















Table 4. 28-day Compressive Strength Results, psi

	Mixture
	Curing Age (days)
	Batch 1
	Batch 2
	Batch 3
	Batch 4
	Batch 5
	Batch 6
	Mean
	Range

	
	
	
	
	
	
	
	
	
	

	Commercial 3500
	0
	1960
	1910
	2100
	2150
	2300
	2050
	2078
	390

	
	3
	2350
	2400
	2590
	2590
	2640
	2480
	2508
	290

	
	7
	2670
	2920
	2790
	2790
	2780
	2740
	2782
	250

	
	14
	3000
	3000
	3050
	3040
	2800
	2940
	2972
	250

	 

	Commercial ACI
	0
	2720
	2620
	2750
	2890
	2890
	2790
	2777
	270

	
	3
	3080
	3060
	3390
	3220
	3190
	3150
	3182
	330

	
	7
	3470
	3480
	3720
	3450
	3530
	3370
	3503
	350

	
	14
	3620
	3560
	3720
	3590
	3520
	3610
	3603
	200

	 

	CRED
	0
	3280
	3580
	3650
	3780
	3740
	3730
	3627
	500

	
	3
	3710
	3830
	4040
	3920
	3980
	4140
	3937
	430

	
	7
	4100
	4350
	4380
	4370
	4300
	4410
	4318
	310

	
	14
	4250
	4340
	4470
	4550
	4420
	4710
	4457
	460



Table 5. 28-day Splitting Tensile Strength Results, psi

	Mixture
	Curing Age (days)
	Batch 1
	Batch 2
	Batch 3
	Batch 4
	Batch 5
	Batch 6
	Mean
	Range

	
	
	
	
	
	
	
	
	
	

	Commercial 3500
	0
	235
	220
	235
	215
	255
	215
	229
	40

	
	3
	290
	290
	260
	290
	295
	270
	283
	35

	
	7
	320
	320
	280
	305
	310
	280
	303
	40

	
	14
	290
	315
	300
	305
	325
	335
	312
	45

	 

	Commercial ACI
	0
	300
	280
	310
	305
	305
	300
	300
	30

	
	3
	350
	300
	350
	345
	340
	345
	338
	50

	
	7
	315
	335
	340
	360
	345
	335
	338
	45

	
	14
	370
	385
	345
	370
	370
	340
	363
	45

	 

	CRED
	0
	340
	345
	355
	325
	360
	315
	340
	45

	
	3
	345
	375
	345
	325
	415
	355
	360
	90

	
	7
	415
	375
	365
	385
	380
	335
	376
	80

	
	14
	400
	400
	400
	415
	390
	390
	399
	25



Quality of Results

	Tables 6, 7, and 8 show the comparison of actual and allowable ranges for each hardened state test. The allowable ranges were calculated via multiplying the mean result of each batch by a factor for maximum acceptable range from ASTM C670 that depends on the number of test results, as well as a coefficient of variation factor (COV) from each test’s individual test method criteria (13). Note that the test method for split tensile strength, ASTM C496, does not include a COV factor for four-inch by eight-inch cylinders, however it does recommend a factor for six-inch by twelve-inch cylinders (12). This recommended factor was used in this quality analysis in order to provide a means of check on the ranges of the split tensile results.

	The red shaded cells in Tables 6, 7, and 8 represent instances when the range obtained exceeded the allowable range. Green shaded cells represent instances when the range obtained was lower than the upper limit set by the allowable range.

Table 6. Comparison of All Mixture’s SR Ranges to Allowable Ranges

	Curing Age (days)
	Commercial 3500
	Commercial ACI
	CRED

	
	Range (kilohm-cm)
	Allowable Range (kilohm-cm)
	Range (kilohm-cm)
	Allowable Range (kilohm-cm)
	Range (kilohm-cm)
	Allowable Range (kilohm-cm)

	
	
	
	
	
	
	

	0
	1
	3.3
	1.7
	4.1
	0.9
	10.1

	3
	1.1
	3.7
	1.4
	4.1
	1.3
	9.9

	7
	0.7
	4.1
	1.5
	4
	1.5
	10.6

	14
	0.7
	4.2
	1.8
	4.3
	1
	11.1



Table 7. Comparison of All Mixture’s Compressive Strength Ranges to Allowable Ranges

	Curing Age (days)
	Commercial 3500
	Commercial ACI
	CRED

	
	Range (psi)
	Allowable Range (psi)
	Range (psi)
	Allowable Range (psi)
	Range (psi)
	Allowable Range (psi)

	
	
	
	
	
	
	

	0
	390
	266
	270
	355
	500
	464

	3
	290
	321
	330
	407
	430
	504

	7
	250
	356
	350
	448
	310
	553

	14
	250
	380
	200
	461
	460
	571










Table 8. Comparison of All Mixture’s Tensile Strength Ranges to Allowable Ranges

	Curing Age (days)
	Commercial 3500
	Commercial ACI
	CRED

	
	Range (psi)
	Allowable Range (psi)
	Range (psi)
	Allowable Range (psi)
	Range (psi)
	Allowable Range (psi)

	
	
	
	
	
	
	

	0
	40
	45.8
	30
	60
	45
	68

	3
	35
	56.5
	50
	67.7
	90
	72

	7
	40
	60.5
	45
	67.7
	80
	75.2

	14
	45
	62.3
	45
	72.7
	25
	79.8



	Four out of thirty-six cases across all mixtures and tests are seen to have an actual range greater than the allowable range. Commercial 3500 and CRED with zero days of immersion curing experienced one batch having lower than normal compressive breaks. CRED with three and seven days of immersion curing experienced singular batches having higher than normal tensile strengths for their curing age. This is thought to be a symptom of sample size; however, the exact cause is unknown but considered not to be a problem.

Analysis of Results

	A statistical analysis of the hardened properties results for each mixture was conducted in order to determine which mix performed better with a certain duration of curing time. A statistical t-test with the assumption of unequal variances was conducted in order to accomplish this. When the absolute value of the calculated t-statistic was found to be less than the critical t-value at the corresponding degree of freedom, the results corresponding to this specific comparison were deemed to be not statistically different (NSD). When the absolute value of the calculated t-statistic was found to be greater than the critical t-value at the corresponding degree of freedom, the results corresponding to this specific comparison were deemed to be statistically significantly different (SSD). Once a comparison is deemed SSD, a closer look at the compared mean property values is required to declare which is superior or inferior. 

	The primary objective of this research involves comparing the results of different ages of curing within the same mixture as well as showing how different immersion curing periods affect the hardened property results. These comparisons are shown in Tables 9, 10, and 11. A secondary objective involves comparing results from the same curing age but between the three different mixes, which shows how each mixture compares to each other under the same limited curing conditions. These comparisons are shown in Tables 12, 13, and 14. 

	All mixtures in this study have been used in previous studies and were chosen for this experiment to represent a range of poorest to best performing (Commercial 3500, Commercial ACI, CRED, respectfully). It is through research highlighted in the literature review that the hypothesis of samples being cured via immersion longer will perform better than samples that have not been cured via immersion for as long as that sample can be used. For Tables 9 through 12, green shaded cells represent an instance when the comparison is SSD and the result which has been immersion cured for the smaller period of time is inferior. The percent difference in means of the comparison is shown in these tables as well. Orange shaded cells represent an instance when the comparison is NSD. For Tables 13 through 15, green shaded cells represent an instance when the lower-ranking mix is SSD and inferior to the higher-ranking mix at that level of curing age. The percent difference in means of the comparison is shown in these tables as well. Orange shaded cells represent an instance when the comparison is NSD.

Table 9. Statistical Comparison of SR Results Within Each Mixture

	Comparison
	Commercial 3500
	Commercial ACI
	CRED

	0 Days vs 3 Days
	Inferior
	-12.4%
	NSD
	NSD

	0 Days vs 7 Days
	Inferior
	-22.7%
	NSD
	Inferior
	-5.3%

	0 Days vs 14 Days
	Inferior
	-28.0%
	NSD
	Inferior
	-9.8%

	3 Days vs 7 Days
	Inferior
	-9.2%
	NSD
	Inferior
	-6.7%

	3 Days vs 14 Days
	Inferior
	-13.9%
	NSD
	Inferior
	-11.2%

	7 Days vs 14 Days
	NSD
	NSD
	Inferior
	-4.2%



Table 10. Statistical Comparison of Compressive Strength Results Within Each Mixture

	Comparison
	Commercial 3500
	Commercial ACI
	CRED

	0 Days vs 3 Days
	Inferior
	-20.7%
	Inferior
	-14.6%
	Inferior
	-8.50%

	0 Days vs 7 Days
	Inferior
	-33.8%
	Inferior
	-26.2%
	Inferior
	-19.10%

	0 Days vs 14 Days
	Inferior
	-43.0%
	Inferior
	-29.8%
	Inferior
	-22.90%

	3 Days vs 7 Days
	Inferior
	-10.9%
	Inferior
	-10.1%
	Inferior
	-9.70%

	3 Days vs 14 Days
	Inferior
	-18.5%
	Inferior
	-13.3%
	Inferior
	-13.20%

	7 Days vs 14 Days
	Inferior
	-6.8%
	NSD
	NSD







Table 11. Statistical Comparison of Tensile Strength Results Within Each Mixture

	Comparison
	Commercial 3500
	Commercial ACI
	CRED

	0 Days vs 3 Days
	Inferior
	-23.3%
	Inferior
	-12.8%
	NSD

	0 Days vs 7 Days
	Inferior
	-32.0%
	Inferior
	-12.8%
	Inferior
	-10.50%

	0 Days vs 14 Days
	Inferior
	-36.0%
	Inferior
	-21.1%
	Inferior
	-17.40%

	3 Days vs 7 Days
	NSD
	NSD
	NSD

	3 Days vs 14 Days
	Inferior
	-10.3%
	Inferior
	-7.4%
	Inferior
	-10.90%

	7 Days vs 14 Days
	NSD
	Inferior
	-7.4%
	NSD



Table 12. Statistical Comparison of SR Results Within Curing Ages

	Comparison
	Curing Age (days)

	
	0
	3
	7
	14

	Commercial 3500 vs Commercial ACI
	Inferior
	-22.7%
	Inferior
	-11.7%
	NSD
	NSD

	Commercial 3500 vs CRED
	Inferior
	-205.3%
	Inferior
	-168.1%
	Inferior
	-161.9%
	Inferior
	-161.7%

	Commercial ACI vs CRED
	Inferior
	-148.8%
	Inferior
	-140.0%
	Inferior
	-164.7%
	Inferior
	-155.7%



Table 13. Statistical Comparison of Compressive Strength Results Within Curing Ages

	Comparison
	Curing Age (days)

	
	0
	3
	7
	14

	Commercial 3500 vs Commercial ACI
	Inferior
	-33.6%
	Inferior
	-26.8%
	Inferior
	-25.9%
	Inferior
	-21.3%

	Commercial 3500 vs CRED
	Inferior
	-74.5%
	Inferior
	-56.9%
	Inferior
	-55.2%
	Inferior
	-50.0%

	Commercial ACI vs CRED
	Inferior
	-30.6%
	Inferior
	-23.7%
	Inferior
	-23.3%
	Inferior
	-23.7%






Table 14. Statistical Comparison of Tensile Strength Results Within Curing Ages

	Comparison
	Curing Age (days)

	
	0
	3
	7
	14

	Commercial 3500 vs Commercial ACI
	Inferior
	-30.9%
	Inferior
	-19.8%
	Inferior
	-11.8%
	Inferior
	-16.6%

	Commercial 3500 vs CRED
	Inferior
	-48.4%
	Inferior
	-27.4%
	Inferior
	-24.2%
	Inferior
	-28.1%

	Commercial ACI vs CRED
	Inferior
	-13.3%
	NSD
	Inferior
	-11.1%
	Inferior
	-9.9%



Discussion

	The effect of limiting the curing time a concrete can go through in early stages dampens its ability to promote strength and durability characteristics, as seen by the previous tables. Not allowing excess water to enter the concrete’s matrix after final set in order to increase both the rate and degree of hydration decreases the amount of strength gaining hydration product, calcium silica hydrate (CSH). With less CSH comes less strength bonds and more permeable pore space where these bonds would have taken place. 

	When examining the sole effect of curing time, as is done in Tables 9 through 11, it is seen that SR responded better to curing time in the commercial 3500 and CRED mixes than the commercial ACI. This could possibly be attributed to the mix design, as ACI has a higher amount of Portland cement than the other mixes, giving it much more opportunity to start making partial bonds through hydration and providing less permeable pore space. Commercial 3500 and CRED both responded well to SR in terms of immersion curing age, as 5 out of 6 cases in both mixtures proved the higher curing age to be beneficial.

	The effect of providing more curing time had the greatest impact on compressive strength, as seen in Table 10. The commercial 3500 mixture’s results indicated that every instance of comparison shows more immersion curing time leads to an SSD and higher compressive strength than those with less immersion curing time. Commercial ACI and CRED both experienced 5 out of 6 cases where more immersion curing time lead to an SSD and higher compressive strength as well. 

	Tensile strength performed well in both commercial 3500 and commercial ACI, with more curing time leading to SSD and higher tensile strengths in 4 and 5 out of 6 cases, respectfully. The CRED mixture seen split responses, with 3 out of 6 comparisons showing that an extended amount of immersion curing time caused SSD and higher tensile strengths than those with less immersion curing time.

	The analysis shown in Tables 12 through 14 reaffirm the hierarchy of the mixtures shown in phase one of this research.

	Figures 1 and 2 display how an increase in the amount of time a concrete is allowed to cure leads to higher strength and durability results. 


Figure 1. (Left) SR Results Compared to Days of Immersion Curing (Right) Compressive Strength Results Compared to Days of Immersion Curing




















Figure 2. Tensile Strength Results Compared to Days of Immersion Curing



















	Figure 1 (Left) displays the smaller amount of change seen in SR results when considering longer amounts of immersion curing time. This is due in part to the smaller value in number of SR when compared to larger numbers such as compressive or tensile strength. Figure 1 (Right) and Figure 2 provide a good visual on the effects that extended curing time has on strength development. While the effects appear more prominent for compressive strength, tensile strength also has a similar strength development relationship. 

Conclusions

	Using three mixtures that are meant to represent a broad spectrum of commercial and residential concrete and subjecting them to four different time periods of immersion curing, it can be concluded that: 

· More immersion curing time can benefit both strength and durability properties. 

· If using the lower end of the commercial and residential concrete spectrum, which could be considered objectionable, simply curing for three days instead of not curing at all could lead to increase in compressive strength of up to 20%. 

· Using a concrete on the high end of the commercial and residential spectrum, such as CRED, increases the resistance to chloride ion permeability, thus increasing the durability of the concrete without regard to the amount of immersion curing time.
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Compressive Strength vs Days of Curing

Commercial 3500	0	3	7	14	2078	2508	2782	2972	Commercial ACI	0	3	7	14	2777	3182	3503	3603	CRED	0	3	7	14	3627	3937	4318	4457	Days of Curing


Compressive Strength (psi)




SR vs Days of Curing

Commercial 3500	0	3	7	14	6.6	7.4	8.1	8.5	Commercial ACI	0	3	7	14	8.1	8.3000000000000007	8	8.6999999999999993	CRED	0	3	7	14	20.2	19.899999999999999	21	22	Days of Curing


Surface Resistivity (kilohm-cm)




Tensile Strength vs Days of Curing

Commercial 3500	0	3	7	14	229	283	303	312	Commercial ACI	0	3	7	14	300	338	338	363	CRED	0	3	7	14	340	360	376	399	Days of Curing


Tensile Strength (psi)




